Lucas
نویسندگان
چکیده
منابع مشابه
Lucas-sierpiński and Lucas-riesel Numbers
In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers that are not a sum of two prime powers.
متن کاملLucas News
The RSL continues to evolve and two faculty recruitments are in progress for molecular imaging and cognitive neuroimaging. These are major initiatives for the Department and the Lab. Molecular imaging is broadly defined as the visualization of in vivo structures that are identified on the molecular level by genetic expression or some other tagging means. The NIH has recently highlighted this fi...
متن کاملLucas Primitive Roots
is called the characteristic polynomial of the sequence U. In the case where P = -g = 1, the sequence U is the Fibonacci sequence and we denote its terms by F0, Fl9 F2, ... . Let p be an odd prime with p\Q and let e > 1 be an integer. The positive integer u = u(p) is called the rank of apparition of p in the sequence U if p\Uu and p\Um for 0 < m < u; furthermore, u = u(p) is called the period o...
متن کاملFibonacci-Lucas densities
Both Fibonacci and Lucas numbers can be described combinatorially in terms of 0− 1 strings without consecutive ones. In the present article we explore the occupation numbers as well as the correlations between various positions in the corresponding configurations. (2000) Mathematics Subject Classification: 11B39, 05A15
متن کاملON LUCAS v-TRIANGLES
are well known. A list of such basic identities can be found in [3]. If A ^ ±1 or B ^ 1, then w1? s^,... are nonzero by [1], and so are vx = u2lul9 v2 = M4/M2, ... . In the case A = B 1, we noted in [1] that un = 0 o 31n. IF vw = 0, then uln = i/wvw = 0; hence, 31n and un = Q, which is impossible since v~Au = 4B (cf. [3]). Thus, v0,v1? v2,... are all nonzero. We set vw! = Ilo ^ reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Estudios: filosofía, historia, letras
سال: 2015
ISSN: 0185-6383
DOI: 10.5347/01856383.0112.000284187